Linear Forms and Complementing Sets of Integers

نویسنده

  • MELVYN B. NATHANSON
چکیده

Let φ(x1, . . . , xh, y) = u1x1 + · · · + uhxh + vy be a linear form with nonzero integer coefficients u1, . . . , uh, v. Let A = (A1, . . . , Ah) be an h-tuple of finite sets of integers and let B be an infinite set of integers. Define the representation function associated to the form φ and the sets A and B as follows: R (φ) A,B (n) = card ({(a1, . . . , ah, b) ∈ A1 × · · · × Ah × B : φ(a1, . . . , ah, b) = n}) . If this representation function is constant, then the set B is periodic and the period of B will be bounded in terms of the diameter of the finite set {φ(a1, . . . , ah, 0) : (a1, . . . , ah) ∈ A1 × · · · × Ah}. 1. Representation functions for linear forms Let h ≥ 1 and let ψ(x1, . . . , xh) = u1x1 + · · ·+ uhxh be a linear form with nonzero integer coefficients u1, . . . , uh. Let A = (A1, . . . , Ah) be an h-tuple of sets of integers. The image of ψ with respect to A is the set ψ(A) = {ψ(a1, . . . , ah) : (a1, . . . , ah) ∈ A1 × · · · ×Ah} . Then ψ(A) 6= ∅ if and only if Ai 6= ∅ for all i = 1, . . . , h. For ψ(A) 6= ∅, we define the diameter of A with respect to ψ by D (ψ) A = diam(ψ(A)) = sup(ψ(A)) − inf(ψ(A)). We have D (ψ) A > 0 if and only if |Ai| > 1 for some i. For every integer n, we define the representation function associated to ψ by R (ψ) A (n) = card ({(a1, . . . , ah) ∈ A1 × · · · ×Ah : ψ(a1, . . . , ah) = n}) . Then n ∈ ψ(A) if and only if R (ψ) A (n) > 0. Let l ≥ 1 and let ω(y1, . . . , yl) = v1y1 + · · ·+ vlyl be another linear form with nonzero integer coefficients v1, . . . , vl. Consider the linear form φ(x1, . . . , xh, y1, . . . , yl) = ψ(x1, . . . , xh) + ω(y1, . . . , yl). Date: February 2, 2008. 2000 Mathematics Subject Classification. 11B34, 11B13, 11B75,11A67,11D04,11D72.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

K-complementing Subsets of Nonnegative Integers

Let S = {S1,S2, . . .} represent a collection of nonempty sets of nonnegative integers in which each member contains the integer 0. Then S is called a complementing system of subsets for X ⊆ {0,1, . . .} if every x ∈ X can be uniquely represented as x = s1 + s2 + ··· with si ∈ Si. We will also write X = S1 ⊕ S2 ⊕ ··· and, when necessary, refer to X as the direct sum of the Si. We will denote th...

متن کامل

EEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations

GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...

متن کامل

Inverse Problems for Linear Forms over Finite Sets of Integers

Let f(x1, x2, . . . , xm) = u1x1 + u2x2 + · · · + umxm be a linear form with positive integer coefficients, and let Nf (k) = min{|f(A)| : A ⊆ Z and |A| = k}. A minimizing k-set for f is a set A such that |A| = k and |f(A)| = Nf (k). A finite sequence (u1, u2, . . . , um) of positive integers is called complete if n

متن کامل

Binary Linear Forms over Finite Sets of Integers

Let A be a finite set of integers. For a polynomial f(x1, . . . , xn) with integer coefficients, let f(A) = {f(a1, . . . , an) : a1, . . . , an ∈ A}. In this paper it is proved that for every pair of normalized binary linear forms f(x, y) = u1x + v1y and g(x, y) = u2x + v2y with integral coefficients, there exist arbitrarily large finite sets of integers A and B such that |f(A)| > |g(A)| and |f...

متن کامل

Representation Functions of Bases for Binary Linear Forms

Let F (x1, . . . , xm) = u1x1 + · · · + umxm be a linear form with relatively prime integer coefficients u1, . . . , um. For any set A of integers, let F (A) = {F (a1, . . . , am) : ai ∈ A for i = 1, . . . , m}. The representation function associated with the form F is RA,F (n) = card ({(a1, . . . , am) ∈ A m : F (a1, . . . , am) = n}) . The set A is an asymptotic basis with respect to F if RA,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008